INDIAN ARMED FORCES CHIEFS ON OUR RELENTLESS AND FOCUSED PUBLISHING EFFORTS

 
SP Guide Publications puts forth a well compiled articulation of issues, pursuits and accomplishments of the Indian Army, over the years

— General Manoj Pande, Indian Army Chief

"Over the past 60 years, the growth of SP Guide Publications has mirrored the rising stature of Indian Navy. Its well-researched and informative magazines on Defence and Aerospace sector have served to shape an educated opinion of our military personnel, policy makers and the public alike. I wish SP's Publication team continued success, fair winds and following seas in all future endeavour!"

— Admiral Dinesh Kumar Tripathi, Indian Navy Chief

Since, its inception in 1964, SP Guide Publications has consistently demonstrated commitment to high-quality journalism in the aerospace and defence sectors, earning a well-deserved reputation as Asia's largest media house in this domain. I wish SP Guide Publications continued success in its pursuit of excellence.

— Air Chief Marshal A.P. Singh, Indian Air Force Chief
SP's Military Yearbook 2021-2022
SP's Military Yearbook 2021-2022
       

Next Gen Engines

The engines being the most important, and most expensive, aircraft part, their development will shape the airline industry’s green transition

Issue: 09-2022By Air Marshal Anil Chopra (Retd)Photo(s): By Pratt & Whitney, GE Aviation, CFM
The PW127XT-M engines are certified for up to a 50 per cent sustainable aviation fuel blend

The most important thing that drive all future civil aerospace engine design is the engine efficiency, which has direct impact on specific fuel consumption, operating costs and environmental issues. New propulsion means for autonomous systems is another area of interest to civil aviation world. All top enginemakers are unveiling new technologies to burn less fuel, cut CO2 emissions and produce less noise. As they enhance engine efficiencies, they are simultaneously exploring electric and hybrid propulsion systems. Airbus announced in September 2020 it would seek to produce a hydrogen-powered plane by 2035. Considering that large number of drones and Urban Air Mobility (UAM) are beginning to fly over populated areas, the aero-acoustics of these engines will also be a design focus. Benefits of research and technology in propulsion will shorten engine development cycle, reduce engine weight, increase engine performance, reduce engine fuel consumption, enhance reliability, reduced emissions and noise, increase component life and reduce maintenance requirements. The four leading engine manufacturers are taking different approaches as they work on newer models.

CFM INTERNATIONAL

CFM International, a joint venture between GE Aviation and Safran, were behind the best-selling aircraft engine of all time, the CFM56, and now the high-bypass turbofan LEAP (Leading Edge Aviation Propulsion) engine. LEAP has been flying with components from Ceramic matrix composites (CMC) and has 3D-printed fuel nozzles. LEAP is the second-most ordered jet engine behind the 44-year-old CFM56, which achieved 35,500 orders. CFM intended to produce 2,000 engines in 2023.

In June 2021 CFM announced their potential successor which is being hyped as “the future of flight”. The CFM new RISE (Revolutionary Innovation for Sustainable Engines) programme will produce the next-generation CFM engine by the mid-2030s. The programme targets are to reduce fuel consumption and carbon emissions by more than 20 per cent while also being 100 per cent compatible with both Sustainable Aviation Fuel (SAF) and hydrogen. Safran CEO Olivier Andriès promised that the venture would prove to be “a real game-changer”. The RISE programme would be the first of its kind open-fan architecture that will yield the greatest benefit. It will help optimise engine operation across each segment of flight.

PRATT & WHITNEY

Pratt & Whitney is best known for the PW1000G, which powers the Airbus A220 and the A320neo family. Its six variants collectively form the GTF family. Pratt & Whitney has now invested $10 billion into its geared turbofan technology. The GTF engine fans rotate much slower than the compressor and turbine, which gives them a 12:1 bypass ratio, which is the highest in the industry. The geared turbofan design results in “double-digit reductions in fuel efficiency, noise and emissions”. Pratt & Whitney views the GTF’s new designswith even higher bypass ratios as “the architecture of the future”. The new GTF Advantage engine will be the most environmentally friendly option capable of even lower lifecycle emissions with sustainable aviation fuel (SAF). Successfully tested on 100 per cent SAF, GTF Advantage engines will be available for A320neo family aircraft starting in 2024.

Pratt & Whitney is also working on a hybrid-electric turboprop demonstrator on the De Havilland Canada’s Dash 8-100. It is expected to begin flight tests in 2024. The regional market’s will be the first to benefit from the lower-carbon technologies like all-electric, hybrid-electric and hydrogen-powered propulsion. The same will later percolate to larger aircraft.

GE AVIATION

GE Aviation, also has its stand-alone large turbofan engines. The GE90 which powers the Boeing 777 family, was the world’s largest jet engine when it entered service in 1995. It had introduced the composite fan blades. The engine was also the first to use FAA-approved 3-D printed parts. The GE90 and newer technologies were ported to the GEnx, which is around 15 per cent more fuel-efficient. The GEnx powers the Boeing 787 and 747-8, and is one of the fastest-selling high-thrust jet engine in company’s history.

The GE9X is GE’s latest engine developed specifically for the Boeing 777X

The GE9X is GE’s latest engine developed specifically for the Boeing 777X. In size, the GE9X is wider than the body of a Boeing 737 and more powerful than America’s first manned space rocket. The engine has the world record for the highest thrust, at 1,34,300 pounds. The reduced fan blade thickness improves aerodynamic efficiency, while its lower fan-radius-ratio maximises air-flow and minimises drag. Combined with fewer fan blades than many others, only 16 compared to 38 of GE CF6, GE9X boasts the most efficient fan that increases performance and decreases fuel burn. GE9X incorporates more than 65 CMC components, the most of any commercial aircraft engine to date. These CMC components weigh a third of conventional parts, and yet are twice as strong for greater durability. Leveraging additive manufacturing, GE9X combined more than 300 engine parts into just seven 3D printed components, resulting in less weight. The engine is ten per cent more fuel efficient than the GE90. FAA Certification was awarded on September 25, 2020, and the aero-engine completed dust ingestion testing by November 2021. According to Boeing, the GE9X powered 777X is expected to enter service by 2023. In February 2022, Qatar Airways announced a new order for GE9X engines as part of its global launch order of up to 50 Boeing 777-8 freighters. The 777-8 Freighter is powered exclusively by the GE9X engine. At the same time, Singapore Airlines added 22 GE9X engine orders to its earlier 40 orders for its Boeing 777Xs. In July 2022, Lufthansa announced the purchase of GE9Xpowered Boeing 777-8 Freighters to upgrade its cargo fleet. The engine order includes 14 GE9X engines. The company had much earlier recorded some 700 orders and commitments valued at $28 billion at list price.

The CFM RISE programme would be the first of its kind open-fan architecture that will yield the greatest benefit

GE is also working on the MESTANG (More Electric Systems and Technologies for Aircraft in the Next Generation) technology. Other technologies include composite fan blades, heat resistant light metal alloys, advanced cooling methods and additive manufacturing.

GE Aviation has invested $4.3 billion in facilities in the US and another $1.1 billion abroad to meet production goals. As per GE, its new engine facilities will have America’s first fullyintegrated supply chain to mass produce components from advanced materials. GE is introducing several highly proprietary technologies that are upping their manufacturing capabilities in the United States.

ROLLS-ROYCE

Rolls-Royce has been famous for its high-bypass Trent turbofans that power many Airbus and Boeing large airliners. Their forthcoming engines feature new architectures and innovative technological improvements to deliver 2-shaft and 3-shaft engine solutions for future aircraft applications. They have announced that they are working on building world’s largest jet engine. Called the UltraFan demonstrator, the engine with the largest fan diameter ever, of 140 inches, is under assembly at the company’s facility at Derby, UK. Its power gearbox has reached 87,000 horsepower, which is a new record. The first run of the first demonstrator engine, UF001, on 100 per cent sustainable Aviation Fuel (SAF) is expected later this year. It will offer 25 per cent fuel efficiency over earlier Trent models. In the long run, the engine will have the potential to power very wide body jets.

Pratt & Whitney views the GTF’s new designs with even higher bypass ratios as “the architecture of the future”

PROPULSION TECHNOLOGY NEW APPROACH

Past three generations of gas turbine engines have incorporated increased turbine inlet temperature, increased compressor pressure ratio, increased bypass ratio, improved fan and nacelle performance, reduction of noise and emissions and improved reliability. The new engine technologies, will involve engine-airframe integration, new and improved materials and material-processing techniques, advances in turbo-machine technology, progress in combustion technology and vastly improved utilisation of Computational Fluid Dynamics (CFD) in engine design procedures. The carbon-fibre blades allowed high-bypass jet engines that allowed developing efficient longhaul jets like the Boeing 777 and the Boeing 787 Dreamliner that could use just two engines rather than four. Novel technologies such as “smart engines” and the use of magnetic bearings will change the course of engine development. Additive manufacturing offers lighter, cheaper and quick-to-manufacture parts which will cut assembly costs and time, simplify maintenance and save on fuel.

The CFM International RISE (Revolutionary Innovation for Sustainable Engines) Technology aims to produce a dramatically new generation gas-turbine engine design that will have an open rotor or fan without the conventional pod around the rotating fan blades

GREENER ENGINE APPROACH

Cutting emissions and noise abatement has been possible through technological innovations. Newer models of the two most-widely used aircraft today - the Boeing 737 and the Airbus A320, not only carry more passengers, but also burn 23 per cent less fuel, through much better fuel burn efficiency. Lightweight low pressure turbofans using composite fan blades, high efficiency low pressure turbine, advanced engine externals and installations including novel noise attenuation, advancing high speed turbine design, aggressive mid-turbine inter-duct; and even a low emission combustion chamber for next generation rotary-craft engine. CMC has one-third the weight of steel but can withstand temperatures as high as 2,400 degrees Fahrenheit, beyond the melting point of many advanced metallic super-alloys, thus improving engine’s thermal efficiency. 3D-printed components, hybrid-electric systems, advanced heat-transfer circuits are other breakthrough technologies.

SIMPLY SAF

Sustainable aviation fuel (SAF) have become a reality in the past ten years or so. It involves the use of farm waste or domestic trash for generation of bio-chemicals which can be used as aviation fuels. These fuels have to generate the same specific impulse, if not more, than what conventional ATF does to make it popular amidst the aviation companies. When manufactured appropriately, SAF can be produced without creating stress on agricultural lands or depleting food crops. The global SAF use amounts to only 0.1 per cent of total aviation fuel, mainly due to high cost and limited availability. In fact, it costs as much as three to five times the price of jet fuel, a figure that should drop as its use increases and production consequently rises. SAF production would need to be scaled up dramatically to meet a substantial part of the 500 million tonnes a year projected to be required by commercial aviation by 2050. However, this figure could prove to be an overestimate if efforts to replace the gas-turbine engines of future short- and medium-haul aircraft with radical new power plants based on electricity and hydrogen, fructify.

AIRCRAFT AND ENGINE DESIGN FEATURES

Ultrahigh bypass turbofans, open rotor engines, use of alternative fuels, relocating engines on the body of the aircraft such that engine noise is deflected upwards are some design considerations. Blended wing-body as in X-48B aircraft prototype and advanced electrical power technologies are being experimented with. Improvement in performance can be achieved by moving from a component based design to a fully integrated design by including wing, tail, belly fairing, pylon, engine, and high-lift devices into the solution. Electric engines using lithium polymer batteries and solar-powered manned aircraft designed to fly both day and night without the need for fuel, are already under development. Solar electric propulsion is also being evaluated developed by NASA using the unmanned ‘Pathfinder’ aircraft.

HEAT RECOVERY CONCEPT

Two new engine concepts currently under investigation include the ‘Combined Brayton Cycle Aero Engine’ and ‘Multi-Fuel Hybrid Engine’. Currently, over 50 per cent of the energy gets ejected as waste heat. A heat exchanger integrated in a turbofan core can convert recovered heat into useful power which can be used for on-board systems or to power an electrically driven fan to produce auxiliary thrust. A dual combustion chamber, wherein the high temperature generated in the first stage, allows ignition-less combustion in the inter stage, thus reducing CO and NOx emissions. Cryogenic bleed air cooling can enhance the engine’s thermodynamic efficiency.

GE9X is wider than the body of a Boeing 737 and more powerful than America’s first manned space rocket

ADAPTIVE CYCLE ENGINE (ACE)

The ACE, unlike traditional engines with fixed airflow, is a variable cycle engine that will automatically alternate between a high-thrust mode for maximum power and a high-efficiency mode for optimum fuel savings. ACE is designed to increase aircraft thrust by up to 20 per cent, improve fuel consumption by 25 per cent, and extend the range by over 30 per cent. The Adaptive Versatile Engine Technology programme is an aircraft engine development programme with the goal of developing an efficient adaptive cycle or variable cycle, engine for next-generation aircraft. Rolls-Royce, GE Aviation, and Pratt & Whitney are major participants in the programme.

CONCLUSION

Smart engines use computer technology and the microelectronics revolution and allow full-authority electronic digital controls on aircraft engines. There are active controls at component or subcomponent level within the compressor, gas turbines and bearings. They incorporates real-time feedback. Magnetic bearings are being used to reduce friction and lubrication requirements. Real-time diagnostics cut servicing time revolutionising flight efficiency and profitability. Drones and robots combined with improved imaging technology, are increasingly being used for aircraft/engine maintenance. The big data revolution and information technology allows maintenance companies to amass the correct parts and technicians to make any repairs as soon as an aircraft lands. Electric motors are increasingly being used to drive motors and reduce hydraulic and pneumatic systems. On-board power storage has also grown significantly. Additive manufacturing is increasingly being used. Airbus/Rolls-Royce hybrid electric with gas-turbine engine will allow peak power for take-off and climb, while for the descent, the engine is shut down and the electric fans recover. Research is on for plasma jet engines that will use electricity to generate electro-magnetic fields instead of fuel by compressing and exciting argon gas into a plasma similar to that inside a fusion reactor. New technologies will bring change, challenge and opportunity.